首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233400篇
  免费   29174篇
  国内免费   24053篇
电工技术   18865篇
技术理论   8篇
综合类   15716篇
化学工业   60747篇
金属工艺   8885篇
机械仪表   12374篇
建筑科学   9134篇
矿业工程   3196篇
能源动力   6953篇
轻工业   30316篇
水利工程   2476篇
石油天然气   7299篇
武器工业   1976篇
无线电   28227篇
一般工业技术   22490篇
冶金工业   5799篇
原子能技术   3627篇
自动化技术   48539篇
  2024年   607篇
  2023年   3583篇
  2022年   6087篇
  2021年   8521篇
  2020年   7913篇
  2019年   7326篇
  2018年   6679篇
  2017年   9060篇
  2016年   9863篇
  2015年   11211篇
  2014年   11893篇
  2013年   15492篇
  2012年   17977篇
  2011年   19845篇
  2010年   14394篇
  2009年   14235篇
  2008年   15062篇
  2007年   17169篇
  2006年   16296篇
  2005年   13944篇
  2004年   11785篇
  2003年   9380篇
  2002年   7304篇
  2001年   5560篇
  2000年   4476篇
  1999年   3752篇
  1998年   3077篇
  1997年   2378篇
  1996年   2083篇
  1995年   1807篇
  1994年   1604篇
  1993年   1219篇
  1992年   963篇
  1991年   777篇
  1990年   643篇
  1989年   455篇
  1988年   341篇
  1987年   259篇
  1986年   217篇
  1985年   288篇
  1984年   262篇
  1983年   170篇
  1982年   215篇
  1981年   109篇
  1980年   123篇
  1979年   34篇
  1978年   23篇
  1977年   29篇
  1974年   18篇
  1959年   18篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   
52.
Palm fatty acid distillate (PFAD) is a rich source of vitamin E. As compared to other vegetable oil, PFAD has higher tocotrienol (70–80%) over tocopherol content, which makes it a valuable source for vitamin E extraction. Current vitamin E extraction methods are not sustainable due to the intensive usage of chemical and high operational cost. Hence, the present study investigated for the first time using dry fractionation process as a green and economical pretreatment method for separating solid fraction (stearin) and liquid fraction (olein) in order to concentrate vitamin E from PFAD in olein fraction. We examined the dry fractionation conditions: crystallization ending temperature (36–44 °C), cooling rate (0.3 and 1.5°C min−1), stirring speed (20–125 rpm), and holding time (0–60 min) on the composition of unsaturated and saturated fatty acids as well as vitamin E content in liquid fraction (olein) and solid fraction (stearin) using gas chromatography and high performance liquid chromatography, respectively. In most of these conditions, vitamin E was ultimately higher in olein fraction as compared to stearin fraction, which is correlated with the high degree of unsaturation. Under a cooling rate of 0.3°C min−1, 90 rpm stirring speed, and ending crystallization of 38 °C, the highest vitamin E rich olein fraction was attained with 1479 ± 10.51 ppm in 50 g olein fraction as compared to 1366 ± 7.94 ppm in 500 g of unfractionated PFAD.  相似文献   
53.
We report here the development of two computational tools PCFPS (Photonic Crystal Fiber Parameter Study) and PCFPA (Photonic Crystal Fiber Parameter Analysis), equipped with graphical user interface (GUI) for modeling of photonic crystal fiber. The tools are based on different structural parameters, and they provide characteristic analysis of the modal parameters from the structural parameters. The main feature of PCFPS is that it enables the user to find out the values of each defining modal parameter that has an immense contribution towards the manufacture of photonic crystal fiber. Additionally, PCFPA allows the user to observe the variation in the modal parameters with respect to the changes in structural parameters (such as d, Λ, d/Λ, and λ/>Λ). Besides their ease of use, these two schemes have high computational precision and adaptability, giving a novel platform to optical engineers to modulate the microstructured fibers according to their requirement.  相似文献   
54.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
55.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
56.
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.  相似文献   
57.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
58.
The impact of graphite nanoplatelets (GNPs) on the physical and mechanical properties of cementitious nanocomposites was investigated. A market-available premixed mortar was modified with 0.01% by weight of cement of commercial GNPs characterized by two distinctively different aspect ratios.The rheological behavior of the GNP-modified fresh admixtures was thoroughly evaluated. Hardened cementitious nanocomposites were investigated in terms of density, microstructure (Scanning Electron Microscopy, SEM and micro–Computed Tomography, μ-CT), mechanical properties (three-point bending and compression tests), and physical properties (electrochemical impedance spectroscopy, EIS and thermal conductivity measurements). At 28 days, all GNP-modified mortars showed about 12% increased density. Mortars reinforced with high aspect ratio GNPs exhibited the highest compressive and flexural strength: about 14% and 4% improvements compared to control sample, respectively. Conversely, low aspect ratio GNPs led to cementitious nanocomposites characterized by 36% decreased electrical resistivity combined with 60% increased thermal conductivity with respect to the control sample.  相似文献   
59.
《Ceramics International》2021,47(21):30349-30357
Mesoporous glass 58S (60SiO2, 36CaO, 4P2O5 mol.%) has excellent bioactivity, biocompatibility, and forms strong bonds with bone making it attractive for implants. Mesoporous bioactive glass 58S powder is typically consolidated through sintering in order to produce an implant with sufficient strength to withstand the in vivo loads. However, heating the glass often leads to crystallinity, which is undesirable because it can reduce bioactivity. Hence, there is a trade-off between minimising crystallinity and maximising glass strength. Even at relatively low temperatures, it has been suggested that segregation of calcium and phosphate from silica within the glass can lead to crystallization. In this work, we confirm the occurrence of low temperature segregation in bioactive glass 58S using electron microscopy with elemental mapping. We probe how segregation affects the material properties of post-sintered glasses via comparison to a glass where phase separation is prevented via addition citric acid to the parent sol.  相似文献   
60.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号